1.datetime
datetime是Python处理日期和时间的标准库。
1.1 获取当前日期和时间
>>> from datetime import datetime --注意到datetime是模块,datetime模块还包含一个datetime类
>>> now = datetime.now() # 获取当前datetime
>>> print(now)
2015-05-18 16:28:07.198690
>>> print(type(now))
<class 'datetime.datetime'>
1.2获取指定日期和时间
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> print(dt)
2015-04-19 12:20:00
1.3datetime转换为timestamp时间戳
在计算机中,时间实际上是用数字表示的。我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0
(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp。——timestamp的值与时区毫无关系
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0 ---不算小数位,整数位10位
>>>print(str(ts*1000).split('.')[0]) ---把时间戳变为13位整数
1429417200000
注意Python的timestamp是一个浮点数,整数位表示秒。
某些编程语言(如Java和JavaScript)的timestamp使用整数表示毫秒数,这种情况下只需要把timestamp除以1000就得到Python的浮点表示方法。
1.4timestamp转为datetime
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。——本地时间是指当前操作系统设定的时区
1.4str转换为datetime ——strptime()
很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。
>>> from datetime import datetime
>>> cday = datetime.strptime('2015-6-1 18:19:59', '%Y-%m-%d %H:%M:%S')
>>> print(cday)
2015-06-01 18:19:59
字符串'%Y-%m-%d %H:%M:%S'
规定了日期和时间部分的格式。详细的说明请参考Python文档。
1.5 datetime转换为str——strftime()
如果已经有了datetime对象,要把它格式化为字符串显示给用户,就需要转换为str.
>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28
1.6datetime加减
>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
1.7 本地时间转换为UTC时间
本地时间是指系统设定时区的时间,例如北京时间是UTC+8:00时区的时间,而UTC时间指UTC+0:00时区的时间。
一个datetime
类型有一个时区属性tzinfo
,但是默认为None
,所以无法区分这个datetime
到底是哪个时区,除非强行给datetime
设置一个时区:
>>> from datetime import datetime, timedelta, timezone
>>> tz_utc_8 = timezone(timedelta(hours=8)) # 创建时区UTC+8:00
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012)
>>> dt = now.replace(tzinfo=tz_utc_8) # 强制设置为UTC+8:00
>>> dt
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012, tzinfo=datetime.timezone(datetime.timedelta(0, 28800)))
如果系统时区恰好是UTC+8:00,那么上述代码就是正确的,否则,不能强制设置为UTC+8:00时区。
2.collections
collections是Python内建的一个集合模块,提供了许多有用的集合类。
2.1 namedtuple
namedtuple
是一个函数,它用来创建一个自定义的tuple
对象,并且规定了tuple
元素的个数,并可以用属性而不是索引来引用tuple
的某个元素。
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
2.2deque
使用list
存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list
是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
deque
除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
2.3 defaultdict
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
2.4 OrderedDict
使用dict
时,Key是无序的。在对dict
做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']
2.5 ChainMap
ChainMap
可以把一组dict
串起来并组成一个逻辑上的dict
。ChainMap
本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。
什么时候使用ChainMap
最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap
实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。
2.6 Counter
Counter
是一个简单的计数器,例如,统计字符出现的个数:
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
>>> c.update('hello') # 也可以一次性update
>>> c
Counter({'r': 2, 'o': 2, 'g': 2, 'm': 2, 'l': 2, 'p': 1, 'a': 1, 'i': 1, 'n': 1, 'h': 1, 'e': 1})
Counter
实际上也是dict
的一个子类,上面的结果可以看出每个字符出现的次数。
3.argparse
在命令行程序中,经常需要获取命令行参数。
3.1sys.argv
Python内置的sys.argv
保存了完整的参数列表,我们可以从中解析出需要的参数:
# copy.py
import sys
print(sys.argv)
source = sys.argv[1]
target = sys.argv[2]
# TODO...
运行上述copy.py
,并传入参数,打印如下:
['copy.py', 'source.txt', 'copy.txt']
这种方式能应付简单的参数,但参数稍微复杂点,比如可以使用-d
复制目录,使用--filename *.py
过滤文件名等,解析起来就非常麻烦。
3.2 argparse
详细信息
为了简化参数解析,我们可以使用内置的argparse库,定义好各个参数类型后,它能直接返回有效的参数。
获取有效参数的代码实际上是这一行:
args = parser.parse_args()
4.base64 二进制编码
原理说明
Base64是一种用64个字符来表示任意二进制数据的方法。
应用场景:用记事本打开exe
、jpg
、pdf
这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。——Base64适用于小段内容的编码,比如数字证书签名、Cookie的内容等。
Python内置的base64
可以直接进行base64的编解码:
>>> import base64
>>> base64.b64encode(b'binary\x00string')
b'YmluYXJ5AHN0cmluZw=='
>>> base64.b64decode(b'YmluYXJ5AHN0cmluZw==')
b'binary\x00string'
由于标准的Base64编码后可能出现字符+
和/
,在URL中就不能直接作为参数,所以又有一种"url safe"的base64编码,其实就是把字符+
和/
分别变成-
和_
:
>>> base64.b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd++//'
>>> base64.urlsafe_b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd--__'
>>> base64.urlsafe_b64decode('abcd--__')
b'i\xb7\x1d\xfb\xef\xff'
5.XML
来源
XML虽然比JSON复杂,在Web中应用也不如以前多了,不过仍有很多地方在用。
操作XML有两种方式:
- DOM:DOM会把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点。
- SAX:SAX是流模式,边读边解析,占用内存小,解析快,缺点是我们需要自己处理事件。——正常情况下,优先考虑SAX,因为DOM实在太占内存。
5.1SAX
在Python中使用SAX解析XML非常简洁,通常我们关心的事件是start_element
,end_element
和char_data
,准备好这3个函数,然后就可以解析xml了。
举个例子,当SAX解析器读到一个节点时:
<a href="/">python</a>
会产生3个事件:
- start_element事件,在读取
<a href="/">
时; - char_data事件,在读取
python
时; - end_element事件,在读取
</a>
时。
6.HTMLParser
如果我们要编写一个搜索引擎,第一步是用爬虫把目标网站的页面抓下来,第二步就是解析该HTML页面,看看里面的内容到底是新闻、图片还是视频。
假设第一步已经完成了,第二步应该如何解析HTML呢?
HTML本质上是XML的子集,但是HTML的语法没有XML那么严格,所以不能用标准的DOM或SAX来解析HTML。
好在Python提供了HTMLParser来非常方便地解析HTML,只需简单几行代码: