【每日一题1122】斐波拉契求和

:woman_mage: 给定一个正整数n,请编写一个函数solution,求该斐波拉契数列截至第n项时,所有的偶数只和。

示例:
solution(5) == 2,因为数列值是:0,1,1,2,3,5,其中偶数只和为0+2=2。

题目难度:简单
题目来源:codewar:sumFibs

def solution(n: int) -> int:
    pass

assert solution(5) == 2
assert solution(9) == 44
assert solution(10) == 44
def solution(n: int) -> int:
    f_list = [0, 1]
    o_list = []
    for _ in range(n-2):
        one_num = sum(f_list[-2:])
        f_list.append(one_num)
        if one_num % 2 == 0:
            o_list.append(one_num)
    return sum(o_list)


assert solution(5) == 2
assert solution(9) == 10
assert solution(10) == 44

def solution(n: int) → int:

l = [0,1]

list_even = []

i = 3

while i <= n:

    temp_num = sum(l[-2:])

    l.append(temp_num)

    if temp_num%2 == 0:

        list_even.append(temp_num)

    i += 1

return sum(list_even)

assert solution(1) == 0

assert solution(5) == 2

assert solution(9) == 10

assert solution(10) == 44

def solution(n: int) -> int:
    l = 0
    m = 1
    nums = 2
    list1 = [0]
    while nums <= n:
        if nums % 2 == 0:
            l = l + m
            nums += 1
            if l % 2 == 0:
                list1.append(l)
        if nums % 2 != 0:
            m = m + l
            nums += 1
            if m % 2 == 0:
                list1.append(m)
    return sum(list1)


assert solution(5) == 2
assert solution(9) == 44
assert solution(10) == 44
def solution(n: int) -> int:
    nums = [0,1]
    for i in range(1,n):
        nums.append(nums[i]+nums[i-1])
    return sum([item for item in nums if item%2 ==0])

assert solution(5) == 2
assert solution(9) == 44
assert solution(10) == 44
1 个赞

def sum1(n):
  array =[0]*n
  su=0
  array[0] = 1
  array[1] = 1
  
  for i in range(2,n):
    array[i] = array[i-1] + array[i-2]
    if array[i] % 2 == 0:
      su = su + array[i]
  return su

def solution(n: int) -> int:
    list1 = [0, 1]
    res = 0

    for i in range(2, n):
        tmp = list1[i-1] + list1[i-2]
        list1.append(tmp)

    for j in list1:
        if j % 2 == 0:
            res += j
    return res
1 个赞
public int solution1(int n){
        int res =0;
        if (n<2){
            return 0;
        }
        ArrayList<Integer> arrayList = new ArrayList<>();
        arrayList.add(0);
        arrayList.add(1);
        for (int i = 2; i < n; i++) {
            int temp = arrayList.get(i-2) +arrayList.get(i-1);
            if(temp%2 ==0){
                res += temp;
            }
            arrayList.add(temp);
        }

        return res;
    }

def Fibonacci(n: int):
if n == 0:
return 0
elif n == 1:
return 1
else:
return Fibonacci(n-1) + Fibonacci(n-2)

def sollution_1122(n):
‘’’
给定一个正整数n,请编写一个函数solution,求该斐波拉契数列截至第n项时,所有的偶数只和。

示例:
solution(5) == 2,因为数列值是:0,1,1,2,3,5,其中偶数只和为0+2=2。
斐波那契数列
F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)
:return:
‘’’
result = 0
num = 0
while num <= n:
data = Fibonacci(num)
if data%2 == 0:
result = result+data
num += 1
return result

def test_solution_1122():
‘’’
0,1,1,2,3,5,8,13,21,34
:return:
‘’’
assert sollution_1122(0) == 0
assert sollution_1122(2) == 0
assert sollution_1122(5) == 2
assert sollution_1122(9) == 44

def solution(n: int) → int:
list1 = [0, 1]
num = 0
if n > 2:
for i in range(2, n + 1):

        list1.append(list1[i - 2] + list1[i - 1])
        if (list1[i - 2] + list1[i - 1]) % 2 == 0:
            num += (list1[i - 2] + list1[i - 1])
return num

assert solution(5) == 2
assert solution(9) == 44
assert solution(10) == 44

求和汇总

def solution(n: int) -> int:
    sum = 0
    for i in range(n+1):
        result = feb(i)
        if result%2==0: sum += result
    print(sum)
    return sum

计算斐波那契

def feb(n: int) -> int:
    if n == 0 : return 0
    if n == 1 : return 1
    return feb(n-1)+feb(n-2)
def solution(n: int) -> int:
    data = [0, 1]
    for i in range(1, n):
        data.append(data[i - 1] + data[i])
        result = sum([i for i in data if i % 2 == 0])
    return result


assert solution(5) == 2
assert solution(9) == 44
assert solution(10) == 44
def solution(n):
    result = 0
    for i in range(0, n+1):
        # print(Fibonacci(i))
        if Fibonacci(i)%2 == 0:
            result = result + Fibonacci(i)
    # print(result)
    return result

def Fibonacci(n):
    if n == 0:
        return 0
    if n == 1:
        return 1
    return Fibonacci(n-1) + Fibonacci(n-2)


assert solution(5) == 2
assert solution(9) == 44
assert solution(10) == 44